ASYMPTOTIC DEGREE OF RANDOM MONOMIAL IDEALS

نویسندگان

چکیده

One of the fundamental invariants connecting algebra and geometry is degree an ideal. In this paper we derive probabilistic behavior with respect to versatile Erdős–Rényi-type model for random monomial ideals. We study staircase structure associated a ideal, show that in case shape diagram approximately hyperbolic, robust across several models. Since discrete volume under related summatory higher-order divisor function studied number theory, use connection our control over asymptotic Another way compute ideal standard pair decomposition. This derives bounds on pairs indexed by any subset ring variables. The maximal subsets give count degree, as well being more nuanced invariant

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Asymptotic behaviour of associated primes of monomial ideals with combinatorial applications

Let  $R$ be a commutative Noetherian ring and $I$ be an ideal of $R$. We say that $I$ satisfies the persistence property if  $mathrm{Ass}_R(R/I^k)subseteq mathrm{Ass}_R(R/I^{k+1})$ for all positive integers $kgeq 1$, which $mathrm{Ass}_R(R/I)$ denotes the set of associated prime ideals of $I$. In this paper, we introduce a class of square-free monomial ideals in the polynomial ring  $R=K[x_1,ld...

متن کامل

Arithmetical rank of squarefree monomial ideals of small arithmetic degree

In this paper, we prove that the arithmetical rank of a squarefree monomial ideal I is equal to the projective dimension of R/I in the following cases: (a) I is an almost complete intersection; (b) arithdeg I = reg I ; (c) arithdeg I = indeg I + 1. We also classify all almost complete intersection squarefree monomial ideals in terms of hypergraphs, and use this classification in the proof in ca...

متن کامل

Monomial Ideals

Monomial ideals form an important link between commutative algebra and combinatorics. In this chapter, we demonstrate how to implement algorithms in Macaulay 2 for studying and using monomial ideals. We illustrate these methods with examples from combinatorics, integer programming, and algebraic geometry.

متن کامل

Splittings of Monomial Ideals

We provide some new conditions under which the graded Betti numbers of a monomial ideal can be computed in terms of the graded Betti numbers of smaller ideals, thus complementing Eliahou and Kervaire’s splitting approach. As applications, we show that edge ideals of graphs are splittable, and we provide an iterative method for computing the Betti numbers of the cover ideals of Cohen-Macaulay bi...

متن کامل

Power of Monomial Ideals

1. Preliminaries 3 2. Gröbner Bases 3 2.1. Motivating Problems 3 2.2. Ordering of Monomials 3 2.3. The Division Algorithm in S = k[x1, . . . , xn] 5 2.4. Dickson’s Lemma 7 2.5. Gröbner Bases and the Hilbert Basis Theorem 10 2.6. Some Further Applications of Gröbner bases 18 3. Hilbert Functions 21 3.1. Macaulay’s Theorem 27 3.2. Hilbert Functions of Reduced Standard Graded k-algebras 37 3.3. Hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Commutative Algebra

سال: 2023

ISSN: ['1939-0807', '1939-2346']

DOI: https://doi.org/10.1216/jca.2023.15.99